#SfN16 Socials: The (un)official guide.

First, I’d like to start by saying this was written with first-time SfN-goers in mind, because I know the first time *I* attended SfN, I had no idea that the alphabet went past 26 characters until I walked through the poster aisles (CCC123.43), let alone where all the parties were at. I also made this list for those who just want to keep their party list organized (ahem, yours truly).

Second, I am more than happy to update or correct this list as needed, so please feel free to drop me a line if I’ve missed anything/made any errors.

Lastly, for the newbies: you should know that there are *official* SfN-sponsored socials and then there are the unofficial, but tried and true traditions, that are not *officially* SfN-sponsored socials. Here is a link to the SfN-sponsored socials. They are, traditionally, grouped topically so you can choose your nerdy area of expertise accordingly. As for the rest….well, here you go, you party animals:

ronswansondancinggiphy.gif

Friday 11/11:

So far, it’s looking like Friday night is reserved for lab dinners, sleep-overs, and other private parties…so if you know of any haps on this said-night, let me know!

screen-shot-2016-11-03-at-4-15-56-pm

A non-SfN but fun-looking event is “The New Kids Welcoming Party” – go talk neuroscience to other non-neuro people (or don’t!) In their words, this event is:

“San Diego’s Original Welcoming party for new breweries and distilleries! Live music and a cigar lounge. Food available for purchase. Due to the size of the venue, only 350 tickets are available. We are honored to be included as a new brewery! Can’t wait to celebrate at this epic event along side 14 incredible breweries in our community.” 

Saturday 11/12:

Not to make this a mystery, but: there may or may not be something happening down in Little Italy (there is). Per the hostess, it’s not meant to get too large as a gathering, so I’m not advertising the details here. Chances are, if you’re on Twitter, you know the people who know the people who will connect you. If you’re really interested, message me and I’ll hook you up.

bill-murray-karaoke

9pm — they shut us down: KARAOKE. Last year, a tweep and I became BFFs and took it to the microphone with a few friends who felt like belting their hearts out. BOHEMIAN RHAPSODY. BILLIE JEAN. LIKE A PRAYER. No American Pie allowed, though. PLEASE. Otherwise, sing your hearts out. Location TBD. If you’re a San Diego native and have any recs, let me know either here  by leaving a comment or DM on @geneticexpns.

 

Sunday 11/13:

6pm – 9pm: Online Science Tools for Networking, Data Sharing, and Outreach. Since this event is now sold-out, I wasn’t planning on adding it here, but perhaps it’s good for you to keep it on your radar in case this becomes a regular event. Also, a few tweeps on the panel have encouraged coming out to the event, just in case. It’s possible those who RSVPed won’t show and there may be a waiting list, but BIG DISCLAIMER: no guarantees you’ll be let in if you’re not pre-registered! I’m sure we’ll be live-tweeting, though, so feel free to follow virtually if not in person. Or in Helena’s words:

screen-shot-2016-11-03-at-4-26-17-pm

Screen Shot 2016-11-03 at 4.24.22 PM.png

8:00pm “Pavlov’s Dogz” to get your 60s, 70s AND 80s groove on. More about the musical group posted below (and a link to their ticket page: here.)

screen-shot-2016-11-03-at-4-21-45-pm

Monday 11/14: The night you will NOT sleep

Monday, 11/14 @ 5:30-7:30pm: NeuroEditor’s inaugural #scicomm social. As I am part of this particular venture, this social is dear to my heart (and of course, I’ll be there!). Also, um: 1400 types of Whiskey (they’re the largest in all of California) and happy hour specials extended until 7pm for our event! More deets on our RSVP page (which we’ve extended until the 7th).

screen-shot-2016-10-31-at-9-58-46-pm

Monday, 11/14 8pm-9:30pm: The INCF US Node social @ The Tipsy Crow

Screen Shot 2016-11-03 at 4.28.03 PM.png

Monday, 11/14 @9:30pm until negronis run out (??) Dearly beloved: SfN Banter.

cwgmkgswgaa9hx0

Monday, 11/14 @ 9 pm – 1:30am UCSD Neuroscience Grad Program Social

As per tradition, the UCSD group has put together an amazing video (a pop song parody) to promote their event. This year, they’ve really outdone themselves with “Work Alone” :

[Note, it’s free but you will need to show your SfN badge to enter.]

Oh, and just in case you wanted yet ANOTHER party to go to Monday night (or have mastered the art of being ev

[11/04 update]: THIS JUST IN: Just got word of another party on this same Monday night, hosted by NeuroLabWare at Fluxx Nightclub with DJ Josh Siegle. So, in short: I expect everyone to ordering double and triple shots of espresso in their drinks Tuesday morning….

[11/07 update]:

The International Society for Serotonin Research, or ISSR, formally known as the “serotonin club” will be hosting a mixer for all “sero-nerds” at The Quad Alehouse (868 Fifth Avenue, San Diego, CA) from 6-8pm. $10 to attend. Flyer here.

Agilent Genomics or “NGS On Tap” from 6pm-9pm at the Mission Brewery (1441 L St.  San Diego, 92101) Here’s a link to for more detailed info on the event, including the evening’s agenda.

Tuesday 11/15:

Hang with the Canadians at the CAN-ACN social. Because there’s no better cure for a hangover than Canadians. In fact, there’s nothing better than being surrounded by Canadians. Yes, I’m Canadian – and also American. Anyway.

Hard Rock Hotel at 6:30 PM. Details here.

Screen Shot 2016-10-31 at 10.30.05 PM.png

Wednesday 11/16:

8 am-12pm: Come to my poster and let’s talk memory manipulation! It’ll be a party, right?  I know most of you will be on the first jet plane heading home at this point, but if you’re around – come say hi! Or bring me some coffee and we’ll be best friends forever.

[for real though: I really don’t know of any parties – so let me know if you’re in the know. Also, for real: bring me coffee? I take it with soy. but black is fine].

newbfftumblr_nz8uvsPcYr1sadeovo3_250.gif

Posted in Uncategorized | Leave a comment

This one goes out to all my tweeps.

 

[originally posted on Authorea]     *for the Reddit/Authorea/Winnower Contest

Tied for 1/2nd place w/ “What Lady Gaga didn’t have for lunch” !

screen-shot-2016-10-28-at-3-14-29-pm

I started a Twitter account in 2010, during my first year of graduate school, because I was told I needed to. Not by my graduate program, but by the Society for Neuroscience (SfN). I had just been accepted to be an official “neuro-blogger” for the SfN conference – an annual gathering that draws over 30,000 attendees. The requirements for outreach were minimal: at least one blog post per day during the conference, preferably within our assigned “theme”. Additional postings were encouraged and Twitter accounts were mandatory.

Here’s the thing: I had zero idea how to use Twitter. Wasn’t it something just like a Facebook status, except with a character limit? Half-way through the conference, I realized everyone was including what looked like keywords in their tweets – and always after that pound symbol (yes, ladies and gents: it was the hashtag). Clueless. Or should I say: #Clueless. I spent most of my efforts that year crafting and posting thoughtful blog posts at the end of each day, occasionally sharing them on Twitter.

When the conference was over, the reality of graduate school hit especially hard. I had worked a full-time job before re-starting student life, and I was used to doing what I wanted with my time – but the #phdlife dictates otherwise. My new life consisted of: class, lab, class, lab, exams, lab papers, lab, seminars, lab – with occasional socialization. I largely stopped blogging because I felt guilty for “wasting time”.

I’ll skip over the details between year 3 and the present (year whatever), because (1) word limits and (2) the details differ, but the story is the same: graduate school can be a harrowing, soul-crushing, and potentially isolating experience. I mean every word of that sentence. Before you know it, you begin planning experiments with an attitude that things are bound to fail. Funding and TAships are limited and, besides, some researcher with more funding and resources is bound to “scoop” you at any moment.

Last year, I wanted to attend SfN again, and I wanted to talk science. So I put together some findings from a study in our lab that was largely “non-scoopable”. I also blogged – and tweeted. The poster presentation went well and, this time, I began tweeting like I’d fallen out of the womb knowing how. In the end, though, it wasn’t the lingo and the pace with which I was able to keep up with #sfn15 on Twitter that was impressive. Instead, I was awed and surprised by the positive attitude of the community of “tweeps” I began to follow and interact with.

In fact, I would go so far as to say that the scientists who have taken to Twitter are part of a counter-culture to an otherwise cut-throat, stifling, fiercely competitive, exhausted community of scientific researchers. I know that the graduate school experience is a drop in the bucket of tears and sweat that it takes to make it as a senior scientist these days. Arguably, that’s exactly why it’s all the more important to embrace a spirit of collaboration, outreach, openness and self-care. I thought I was an outlier for believing as much, but it seems the tweeps are with me on this.

Lest anyone think that the only thing I love about Twitter are the tweeps themselves (and this would be enough to keep me signed on), it’s important that I name just a few of the concrete ways in which social media has positively impacted me as a researcher:

Resources shared under the hashtag #OpenScience, have allowed me the opportunity to see examples of successful grant applications, job applications, and statements.

Doors Open. Because I blogged and shared on Twitter, my writing was visible and I was offered the unique opportunity to write for the NTNU/Kavli Foundation in Norway, interview Nobel-prize winning scientists about their science, and learn about their vision for neuroscience.

Outreach: In addition to my freelance writing, I was a host for a ro-cur Twitter account (NeuroTweeps) to disseminate science to the public. I also contributed my science to a unique and beautiful magazine (Interstellate).

Physical and Mental Health: I participated in #47dopain – an exercise challenge (40 workouts within 47 days) with individuals across the globe and continue to use the #AcademicSelfCare hashtag to take “days off” to unplug, and refresh.

During the course of the past year, I have rediscovered my optimism, my confidence, my curiosity – and my love for science. While it might seem that my plate is full now more than ever, I have actually been re-energized and even more productive in lab. There’s something about feeling like we’re all in this beautiful mess together that gives, rather than takes away #AllTheEnergy and #AllTheHope.

Twitter Collage.png

Posted in Uncategorized | Leave a comment

It’s been a while…

Guys. I’m realizing since I last published in this space…well, it’s been a while.

The last post on here is from last year’s SfN (can you say: #phdlife keepin’ me busy?) and we’re already gearing up for the one in San Diego this fall! However, I do have a few updates for anyone who is still tuned in or has kindly included me in their RSS feeds:

  • I have blogged a few posts for Maze Engineers. Click Here for Access to the Blog.
    You can also see my “Science Writing Pubs” tab for more links to articles.
  • I have been writing for the Kavli/NTNU institute in Trondheim, Norway (squee! Yes, for the amazing Moser team; they are as kind as they are brilliant).
  • Last, but not least, I have joined an amazing initiative: NeuroEditor. I will Jonah Lehrer my About Me section and say: it’s an initiative aimed at improving the quality of communication of neuroscience texts (academic or otherwise). You can follow along @NeuroEditor and lastly…
  • I have fallen so deeply in love for the beautiful community of scientists on Twitter. This past year they have gotten me through so many mental blocks and have continued to re-inspire my initial love for this grotesquely beautiful mess known as scientific research (that is when I’m not 100% depressed). They are amazing humans. Tweeps. Whatever. I’m kind of terrified to meet some of them “IRL” but it’ll be great. Right, guys? I’m keepin’ it real @geneticexpns
  • On the Twitter note: mark your calendars for the week of September 26 – October 1, as I will be a featured host during for @Neurotweeps. Or don’t mark your calendars. Either way: I’ll remind you many times before said-event goes live.

Oh, and I *do* have an actual post in the works for this space/for NeuroEditor about neuro-babbling. Once I get through cell counting, mouse training, committee meetings, etcetera – you’ll see it here. Or perhaps you’ll see it sooner b/c I’ve always found writing keeps my analytical brain in tune. However, I have a travel award application to get to, so….until later. Thanks for tuning in.

leslieknopegiphy.gif

Love y’all.

-Anahita

P.S. I now am Leslie Knope’s BFF.

Posted in Uncategorized | Leave a comment

Navigating through space with Dr. May-Britt Moser

stagepic“Wow, nice to see you all,” she said peering out from the bright lights of her stage, smiling at the crowd of over 29, 000 conference attendees. These were the first words Dr. May-Britt Moser spoke when she took the stage for SFN’s 2015 Presidential lecture last Tuesday. It was really nice to see her too, of course, and though we were weary from 5 days of conferencing, the room was full of anticipation.

Retrospectively, a few key phrases immediately come to mind when thinking about the wealth of data she shared: Flintstone. Rats. Rats riding cars. Grids. Speed. Pedunculopontine tegmental nucleus of the mesencephalic locomotor region. Right. Let’s not get ahead of ourselves. I’d like to actually go through the (old and new) data she presented, but first —

A word on neuronal naming conventions: Stimulus-responsive cells are named based on the specific stimulus parameter they are most sensitive to. In other words, they fire (or in the words of May-Britt Moser: pop-pop-pop-pop-pop!) when they are presented with a stimulus they like. For example a flapperdoodle cell is a cell that goes pop-pop-pop when it sees its preferred flapperdoodle, or to use a “real” example, orientation-specific cells are those that fire maximally in response to a visual stimulus of a given orientation.

Alright then, with that — into the brain we go…


The term “cognitive map” was first coined by Edward Tolman in 1948 in his classic psychology paper: Cognitive maps in rats and men”In it, he describes a series of experiments in rats demonstrating the “purposive” (intentional) spatial navigation that they take through a maze. The idea that he and those in his camp (termed, unflatteringly “Tolmaniacs”) was that rats (and men…and presumably women too) were using a mental map of space to navigate accordingly. Thirty years, later the discovery of place cells gave Tolman’s cognitive map theory a concrete physiological basis. Tolgeniuses?

Where am I and which way am I headed? 
you-are-here-cover-2Place Cells
: Place cells were first described by Dostrovsky and O’Keefe in the 1970s. In their seminal follow-up paper “Place units in the hippocampus of the freely moving rat”, they defined place cells as “those for which the rat’s position on the maze was a necessary condition for maximal unit firing.” In other words: for place cells, their preferred flapperdoodle stimulus is a given x-y region in space. [Image credit above: Ryan Jones]

Check out this recording from the Wilson lab at MIT below:

Some interesting factoids about place cells:

  • They can form in the dark (so they don’t need explicit visual cues)
  • They stabilize within minutes to hours of entering a new environment (pups and adults both show an early emergence of place cells).
  • They provide a robust code; it takes a recording of about 100 cells for 10 minutes to determine where the animal actually was, in physical space, within a one-cm accuracy.

There’s obviously much more to be said about place cells, and you can learn more about them here and here and here (that last link is a TedTalk by Neil Burgess). In a bit I’ll discuss what the Mosers did to figure out where these place cells come from, but first, let’s talk about the brain’s “compass”.

Head Direction Cells: Originally discovered in dorsal presubiculum, by Taube, Muller, and Ranck in the 1990s. These cells, often likened to a compass, are cells with different cardinal direction preferences. In lieu of anchoring to the Earth’s magnetic field, the way an traditional compass does, these cells are dependent on landmark and self-motion cues. Importantly, they are quite specifically head-direction cells and do not fire upon simply by a change in direction of eye gaze [More on: Scholarpedia].

Screen Shot 2015-10-22 at 12.03.16 AM

[Image Credit: http://www.memoryspace.mvm.ed.ac.uk/headdirectioncells.html]

So, a quick summary thus far: 

  • Head direction cells are orientation-specific and location-invariant.
  • Place cells are location-specific and orientation invariant.

This is all very cool, but …. where do these signals come from? 

Those of you who have kept up with the most recent Nobel Prize win (2014) in Physiology and Medicine know that it was awarded to O’Keefe (for the discovery of place cells) and to May Britt and Edvard Moser (for their discovery of grid cells) — and if you’ve ever heard the Mosers talk about their scientific journey, you know that the discovery of grid cells is intimately connected to an attempt to understand place cells. Specifically, the question that led them to grid cells was:  How are place cells generated in the first place?

Since the place cells were found in the (dorsal) hippocampus, the first area of suspect was – yep, you guessed it: the hippocampus. One of the most common ways scientists test to see whether a certain variable (brain area, gene, molecule, etc) is necessary for the observed phenomenon at hand, is to play a little game called LOSS OF FUNCTION. In this version of the game: disrupt hippocampus to observe its effect on place cells. What happened when they performed this lesion? A big fat: nothing. The place cells were undisturbed.

So, the fearless explorers of the brain that they were, the Mosers decided to go “upstream” to structures that provide inputs into the hippocampus: entorhinal cortex (EC). More specifically, they looked at Medial EC (MEC) to dorsal hippocampal (dHPC) connections. Together with Menno Witter (who now works down the hall at the Kavli Institute in Trondheim), they targeted this region for the loss of function game, instead. What happened? Partial disruption of place cells…so not a clean removal…but something even more interesting: they discovered another kind of spatially-tuned cell: GRID CELLS.

If the MEC could choose a theme song, it might go something like this: 

tesselate

The discovery of grid cells (GCs) was strange and fascinating and it opened the door to a whole new set of questions about the computation underlying spatial representation. The pattern they observed was reminiscent of place cells; GCs did seem to fire when the rat was in specific regions of space but it wasn’t uniquely the same position, which generated the maximal pop-pop-pop response. Instead, GCs show spatially periodic firing fields. In other words: grid cells know not only where to fire but where not to fire. These cells represent a perfect tessellation – with triangles that connect grid vertices.

Screen Shot 2015-10-31 at 5.59.07 PMDo they all tesselate in the same way? Actually, no — as you move from dorsal to ventral hippocampus, the grid cells grow larger in scale and decrease in resolution. They can map spaces at least as large as 3 meters. In a fun experiment by Brun et al, in the Moser lab, rats ran down an 18-meter long linear track, toward a chocolate reward at the other end. All the while, the Mosers recorded grid cells with different tessellating patterns and characterized them along three main parameters.

Grid Cells vary along three main parameters: 

  • Phase: Refers to the x-y locations of the grid vertices
  • Orientation: Refers to the orientation of the grid axes
  • Scale: Refers to grid frequency/resolution (i.e. how far apart firing fields are)

Screen Shot 2015-10-31 at 12.06.28 AM

Scale is a particularly interesting parameter. In analyzing the data, the Mosers found that not all possible spacings were accounted for. Instead, there were specific patterns of firing that characteristically appeared (40cm, 50-60cm, 70cm and 95cm) at discrete steps. The different scale values were then clustered into what the Mosers deemed as grid cell “modules”, abbreviated as M1, M2, M3, M4 for the four different scales. Starting to feel a bit strange?

It gets weirder: if you take the ratios between the modules (for example: M2/M1, M3/M2, etc), the resulting value is approximately ~1.4 (which math aficionados will readily recognize as the square root of 2). It’s not clear why this might be the case, but it’s possible that this is the optimal way to represent the environment at a high resolution with a minimum number of cells. You can bet your better’s hat that theoretical neuroscientists are hard at work attempting to crack this problem.

Interestingly, modules respond independently to geometric transformations (if M2 grids rescale to a change in the environment, M1 grids can still remain stable). Within given modules, the grid map is rigid and universal. Scale, orientation and phase relationships are preserved across different environments. Lastly, although GCs are anchored to the environment, they remain stable even in the absence of light. It is this stability that has implicated grid cells in a process known as path integration.


Screen Shot 2015-10-31 at 10.23.29 PMPath integration:
Keeping track of  position by integrating linear and angular running speed over time to yield spatial displacement relative to a reference/starting position. For example, if you leave your house in a twisty turvy path, your ability to integrate speed and time means you can keep track of the path and thereby take a “straight shot” back to your house later. [Image is from Burgess’ TedTalk]


…so now we have location specific place cells, orientation specific head direction cells and stable grid cells for path integration. That’s gotta be more than enough, right? Please. You know that the world the brain is way too weird of a place to stop there. Then again, it is trying hard to make sense of a very, very mad world out there…

bvcsBorder Cells: Also known as “Boundary Vector Cells” or “BVCs”. These cells are, you guessed it, active at the edges of environments. Or in the clever words of Asher Mullard, these are neurons “on border patrol” . They are sensitive to borders, period. They are not localized to specific portion of an edge or border. If you stretch the wall, the cell will likewise fire in response along that extended edge. It has been suggested that border cells are a way for grid cells to stabilize or “anchor” to their environment. However, more work needs to be done to clarify what computation border cells are performing and how they are actually contributing to spatial navigation.

Screen Shot 2015-10-31 at 10.29.31 PM


Screen Shot 2015-10-31 at 12.07.51 AM

Speed Cells: Cells which are linearly sensitive to speed. These cells are also consistent with the role of path integration in translating activity across grid cells in a moving animal. According to May-Britt Moser, only 3-6 speed cells are sufficient for strong prediction of actual speed (mean =0.75). Speed cells were discovered by testing whether or not different speeds could systematically modulate firing rate in a subset of MEC cells. To do this, rats were tasked with traversing a 4m-long track, moving at various experimenter-determined speeds…while in a “floor-less” car.

Screen Shot 2015-10-31 at 12.29.26 AM


Screen Shot 2015-10-31 at 12.09.46 AM

The firing rate of MEC speed cells follow the animal’s running speed and increase in a linear manner [graph on the left from the main paper, here]. This is true whether the rat’s activity is spontaneous or not (i.e. whether forced to travel a given speed via the car, or just allowed to move naturally). Just as a rose is a rose is a rose: A speed cell is a speed cell is a speed cell. It’s Shakespearean, really. This is important because integration of speed and head direction inputs enables grid cells to fire at precise locations relative to room-specific cues. According to May Britt Moser, speed cells are abundant in pedunculopontine tegmental nucleus (PPN) of the mesencephalic locomotor region (MLR). It sounds like this work is still ongoing, so keep your eyes out for these (as of yet unpublished) data…


Critical Windows of Development  As part of the attempt to figure out how these various spatially-selective cells are generated, it is important to understand the timeline of their development. Interestingly, place cells, head direction cells and border cells appear almost immediately after birth (as soon as they can be measured, they are there). However, grid cells are slower to mature (usually not until post natal day 28). This begs the question: is there a critical window where the environment makes a difference for the development of these cells?

To get at this question, May-Britt Moser says: “we have to raise animals in weird environments”.  They raised mice in one of three different environments: (1) opaque spheres (thus depriving them of boundaries/borders, geometric and distal spatial cues), (2) in cubes (lack distal cues but have enriched environments) and lastly (3) in ‘normal’ clear cages with distal cues and enriched environments. Interestingly, mice raised in the spherical environment (and transported always in the dark), did not develop normal grid cells; spatial periodicity was substantially reduced in this group compared to those raised in cubes. This implies that grid cells have a critical window of time available to learn about boundaries in the environment and form appropriately. 

To test the activity dependent formation of these grid cells, the Mosers performed a separate set of experiments, in which they showed that silencing parvalbumin (PV) interneurons disrupts head direction cells and impairs tuning of speed cells. In contrast, border cells and grid cells are unaffected, clearly suggesting distinct networks. Given that these various spatially-selective cells mature at different developmental time points, this differentiable disruption makes a lot of sense. It will be interesting to systematically track the development of all these different types of cells over time.


A SUMMARY OF SPATIALLY-SELECTIVE CELLS DISCOVERED SO FAR: 

liketoplay_maybrittmoser

  • Head direction cells are orientation-specific and location-invariant.
  • Place cells are location-specific and orientation invariant.
  • Grid cells fire in a tessellating pattern in 4 characteristic modules; are implicated in path integration (more TBD)
  • Border cells fire preferentially at edges and borders (regardless of length); may be important for anchoring grid cells (also more TBD…)
  • Speed cells fire in response to changing speeds in a linear manner; the speed code is invariant across environments.

Although this blog post probably contains more words than any of my others — I’ve still barely scratched the surface with what researchers (Mosers and others included) have discovered thus far. To learn more, I would dig into the primary research articles. I, myself, foresee many more hours spent in this rabbit hole describing how the brain is representing space and memory (or as some might say: memory space)…

It’s all very intriguing and inspiring and, at the end of the day: it’s just fun to think about. One of the quotables from May-Britt Moser’s SFN lecture is the one I included next to the summary above: “scientists are like children and they like to play”. It’s so very true! Sadly, in the world of competitive, senseless and increasingly sparse grant funding, we either lose sight of this spirit of play altogether or, in the best case scenario, limit our circle of fun and play to “other scientists” and don’t bother discussing our work with those who don’t speak our jargony language. We consider ourselves interdisciplinary if we talk with someone outside of our own scientific field, but rarely do we share the richness our data otherwise.

It might do us some good to reconsider that perspective. “Turns out when you invite an artist into the lab, really interesting things happen,” May-Britt Moser shared that night. Below is the product of such a meeting. It’s a video of neuronal snap, crackle, pops and of flattering rat montages, transformed into a musical overture that just might inspire Pixar’s next Ratatouille movie (or at least…my future post-doc project):

Posted in Uncategorized | 1 Comment

Each day: Same SFN, different story

I woke up this morning to a dream about someone making me an artisan poptart (this has got to be a real thing in some hipster neighborhood, right?) I believe this was my brain’s way of saying: “hey human, if you’re not going to give me sleep, give me sugar. stat” (I suspect this was also primed by the donut/coffee article that somehow kept topping my sfn twitter feed yesterday). This is side of conferencing we don’t always talk about: accumulated sleep deprivation. When feeding off the high of the neuroscientific geniuses around you, it’s easily masked; but eventually the body catches up and you end up making word art instead of writing that article you really wanted to write. Or maybe that’s just me.

SFN provides the same set of activities to partake in every day, but the permutations are endless. Saturday was full of back to back sessions and lectures, and Sunday was a full morning of symposium talks and an afternoon of poster visits. Today (Monday) was an entirely different beast. Same sfn, different story. Each day.

Screen Shot 2015-10-19 at 10.22.46 PM

I put our lab’s posters up today at 7:50am, in an eerily quiet poster hall. Within the first hour, the scientists began trickling in and before I knew it, I was on my 234th run-through of my spiel, answering questions and getting some really good feedback on the data. As exhausted as I was, this was really energizing. Bouncing ideas off other scientists (with a wide range of expertise) helped me think more critically about the data, come up with some new ideas and even getting more excited about my own work. The thing is, what I presented at this year’s sfn is actually a side project or in even more sobering terms, what I’ve at times considered “my backup project” for the past year or so.

The findings were humble, descriptive and incremental – but it’s data. These are some of the realities you face as a graduate student: balancing the number of years that have gone by, the amount of time and energy you’ve invested in other failed projects, and setting your sights on following through on “incremental” findings – which remains open to interpretation (and yet, this aspect is what led to some really interesting conversation with other scientists). I learned to cultivate an appreciation for what the data in front of me could be suggesting.

When all was said and done, I was full of adrenaline, hope and ideas – all of which I threw in my PI’s direction. We bounced some more ideas off each other and extended the conversations over coffee and donuts (I got one!) … and the rest remains to be extended when I return to Davis.

I spent the rest of the afternoon thinking about my project, catching up with old friends, colleagues and mentors (scientists and non-scientists alike) … and napping. Now my friends, it’s time for SFN Banter. Tomorrow, I’m sure, will be same sfn, different story.

Screen Shot 2015-10-19 at 10.28.33 PM

Posted in Uncategorized | Leave a comment

Quotables from the “Memory Engram” Lectures at SFN, 2015

In going through my notes and reflecting on all that was shared about the ever-elusive “memory engram” this past weekend, I came across some quotables worth sharing. An in depth post on the engram is forthcoming. In the meantime, please enjoy the words directly from the horses’ mouths. Also if you have any questions or memory engram issues you’d like more coverage on, let me know. The piece is currently a work-in-progress.

On the advance of modern tools used for querying the memory engram: 

Screen Shot 2015-10-19 at 12.52.22 AM


On the importance of understanding memory strengthening: 

Screen Shot 2015-10-19 at 1.33.22 AM


On Sheena Josselyn’s take home message for SFN, 2015: 

Screen Shot 2015-10-19 at 1.16.47 AM

Posted in Uncategorized | Leave a comment

SFN 2015: Saturday’s Recap

It’s only been one day and I already have SO much I want to write about. Today, highlights from the sessions. Tomorrow, more in-depth focus on memory engrams.

IMG_2005

Professional Development – Careers Beyond the Bench: 

  • A book for those considering careers beyond the bench, recommended by MD Benton: So What Are You Going to Do With That?
  • The Individual Development Plan or “myIDP” is an online tool on the ScienceCareers website. Set concrete goals and follow through here.
  • BEST = Broadening Experience in Scientific Training – an NIH initiative helping train graduates for careers beyond the academy. I was delighted to learn that my own school UC Davis (represent!) happens to be one amongst 17 in the nation to be piloting this.

Neuroscience & the Law: Strange Bedfellows: 

  • In the past, brain science was too readily accepted by the courts and then subsequently shown to be invalid and even harmful (examples cited: eugenics, recovered memories)
  • As a result, judges are now more hesitant about integrating neuroscience into their decision making. According to Judge Rakoff, “the blame goes both ways”
  • Regarding the current use of neuroscience in the courtroom, Judge Rakoff stated:

“My own view is that neuroscience is not yet at the stage where it can be introduced in individual cases with much scientific validity. Conversely, I am very much of the view that neuroscience has advanced to the point where it can make founded generalizations that can inform policy”

  • The prison systems are overpopulated. Solitary confinement is deleterious and backfires in terms of recidivism. We need research to inform whether or not this practice continues or is recommended for termination.

Making, Breaking, and Linking Engrams with Sheena Josselyn or S-Jo (the new J-Lo):

  • Lashley, the man who popularized the term “engram” came to the conclusion that the memory engram was specifically everywhere and nowhere at once.
  • With more modern tools, we have been able to update this view – specifically showing that fear memories are sparsely coded and that they do indeed exist in specific areas.
  • CREB is important because it helps regulate excitability of cells and thus the chances that they will/won’t be recruited into a memory engram.
  • The formation of memory engrams is dependent on a competitive process. Or in the words of Sheena: The winning neurons are encouraging the loss of the losers. The winners are inhibiting the loser neurons. For a spoiler, see paper here. Or else, stay tuned, I’ll fill you in tomorrow.

Until then, remember: “Losers can become winners with the help of optogenetics.” ~ S-Lo

Posted in Uncategorized | Leave a comment